<DIV class=t_msgfont id=postmessage_19988233>35.硬盘彻底损坏后的数据抢救<BR><BR>硬盘经常启动,是最常用的一个区域,所以损坏机率比其他扇区要大的多.我们来仔细谈谈硬盘0道的一些知识和维修方法<BR><BR> 硬盘0道损坏的现象一般就是主板自检不通过(硬盘加点后自检声音正确的).还有的造成启动非常的慢(其他光盘引导也是慢).这种情况一般都能确定属于0道故障(还有一种和0道比较相近的故障就是硬盘固件错误通病,注意区分)<BR><BR> 我们2中方法处理:<BR> 1:用户自己处理:可以用dm,lformat,mhdd来处理0道损坏硬盘(但成功率不高,只适合于轻微损坏的0道修复).我们推荐用lformat的热拔插法来修)<BR> 先用光盘引导电脑(代修硬盘先只插上数据线,不插电源线)等电脑启动成功后,然后这是在插硬盘的电源线(注意这是带电拔插,注意电源别插反了,搞不好烧板的)<BR> 等到硬盘起转自检声完成以后,运行lformat.exe软件,选择找到硬盘参数,进行低格.如果就是修0道故障,只需低格1分钟即可退出.用其他软件分区,看看修复成功没有.如果这样还不能修复,你可以试试hp,dm的擦除.mhdd的擦除试试.还不行就得低2中方法处理了<BR><BR> 2:维修人员处理:一般专业的修理0道问题都是用pc3000来处理的比较多.你可以先扫描,伺服测试等,来确定是否就只是0道损坏,如果就是0道问题的话,手动封闭硬盘的0,0地址即可.自动屏蔽到p-list.<BR> 如果经过你的检测如果属于0磁头损坏的话,只有砍掉硬盘的0磁头才能正常的工作,具体方法不介绍(因为每个牌子的操作是不同的)<BR><BR> 好了,以上就是关于0道一些知识.用户根据自己的情况来处理<BR><BR>36.硬盘出现硬件故障,你敢这样维修么?<BR><BR>前些日子从同学处取得一块昆腾1.2G的小硬盘,有一奇异的毛病---开机自检时若能发现硬盘则用起来基本没有问题,但有时候自检并不能发现硬盘,表现为硬盘启动后高速旋转然后在某个地方停了下来,接着就是“卡塔卡塔”的声音,然后屏幕显示硬盘出错,停在那里。同学有一经验,每次遇到这种情况,曰只需在关机后拔下硬盘的盘体到电路板的连线,然后再开机,听到硬盘启动后再关机,这时再插上连线,只要听到“当”的一声就OK了!<BR><BR> 随着这硬盘在我手里的日子增长,同学的那一招也越发不起作用了。到了后来干脆是无论怎样也不动了,只听见“卡塔卡塔”的声音不绝于耳。想起《电脑报》上的种种方法均取之一试,未见有效。不得已而为之,拿出螺丝刀。各位千万注意:不到万不得已别用这招!<BR><BR> 硬盘的壳体上有六颗螺丝,主轴有一颗,磁头部分有一颗,一共八颗螺丝,下了就可以小心翼翼的打开硬盘了!虽然我们DIYER的家里并没有超静的空间,可是经过我的试验在比较干净的卧室完成这一任务不会给硬盘造成什么伤害!打开硬盘的腔体后,可以看见亮晶晶的盘片,还有一对磁头悬停在盘片的两面。将磁头轻轻的掀起,用镜头纸小心地擦拭。注意:磁头十分脆弱!稍有不慎,即前功尽弃!往上掀起磁头时不能离盘片太高,擦拭磁头也应该从里到外沿盘片的轴向。其实并不太难,也就是十分钟的功夫,估计磁头擦干净了便可以了。这时你会发现盘片上有一些小小的霉点,也一同擦掉,再用FORMAT请别加任何参数,这样FORMAT会找出所有坏道并一一纪录在案(此步操作为必须)。以后操作系统不会去访问有坏道的扇区。这样,一个想轻生的硬盘又被我从死神那里拉了回来。呵呵!虽然是很惊险的,但如果你也有那样的硬盘的话---干脆破罐子乱甩,哈哈,说不定会有惊喜哟!<BR><BR> 编辑评注:这种方法的确比较惊险,稍不小心,硬盘将毁于一旦。所以在这里要提醒大家的是:在动手的时候,遵循胆大心细的原则是最重要的,如果不到万不得已,千万不要如此维修硬盘。<BR><BR>37.硬盘的常见错误提示及解决方法<BR><BR>一、显示:“C:Drive Failure Run Setup Utility,Press(F1)To Resume” <BR><BR> 此类故障是硬盘参数设置不正确所以从软盘引导硬盘可用,只要重新设置 硬盘参数即可。 <BR><BR> 二、显示:“No ROM Basic,System Halted” <BR><BR> 病因分析:造成该故障的原因一般是引导程序损坏或被病毒感染,或是分区表中无自举标志,或是结束标志55AAH被改写。 <BR><BR> 治疗方法:从软盘启动,执行命令“FDISK/MBR"即可。FDISK中包含有主引导程序代码和结束标志55AAH,用上述命令可使FDISK中正确的主引导程序和结束标志覆盖硬盘上的主引导程序,这一招对于修复主引导程序和结束标志55AAH损坏既快又灵。对于分区表中无自举标志的故障,可用NDD迅速恢复。 <BR><BR> 三、显示“Error loading operating system”或“Missing operating system” <BR><BR> 病因分析:造成该故障的原因一般是DOS引导记录出现错误。DOS引导记录位于逻辑0扇区,是由高级格式化命令FORMAT生成的。主引导程序在检查分区表正确之后,根据分区表中指出的DOS分区的起始地址,读DOS引导记录,若连续读五次都失败,则给出“Error loading opearting system”的错误提示,若能正确读出DOS引导记录,主引导程序则会将DOS引导记录送入内存0:7C00h处,然后检查DOS引导记录的最后两个字节是否为55AAH,若不是这两个字节,则给出“Missing operation system”的提示。 <BR><BR> 治疗方法:一般情况下用NDD修复即可。若不成功,只好用FORMAT C:/S命令重写DOS引导记录,也许你会认为格式化后C盘数据将丢失,其实不必担心,数据仍然保存在硬盘上,格式化C盘后可用NU8.0中的UNFORMAT恢复。如果曾经用DOS命令中的MIRROR或NU8.0中的IMAGE程序给硬盘建立过IMAGE镜像文件,硬盘可完全恢复,否则硬盘根目录下的文件全部丢失,根目录下的第一级子目录名被更名为DIR0、DIR1、 DIR2......,但一级子目录下的文件及其下级子目录完好无损,至于根目录下丢失的文件,你可用NU8.0中的UNERASE再去恢复即可。<BR><BR><BR>四、显示:“Invalid Drive Specification” <BR><BR> 治疗方法: <BR><BR> 1、重新分区格式化 <BR><BR> 2、如0磁道损坏需要低级格式化,然后用Set Comspec(指定Command文件位置),使得Command远离0磁道。 <BR><BR> 当硬盘出现分区故障后,希望用户先用上述方法解决,若不成功,对硬盘分区格式化是解决软故障的基本方法,但信息将被清除。其使用原则是:能用高格解决的不用分区,能用分区解决的不用低级格式化。 <BR><BR> 五、显示:“Device error”,然后又显示:“Non-System disk or disk error,Replace and strike any key when ready”,说明硬盘不能启动,用软盘启动后,在A:>后键入C:,屏幕显示:“Invalid drive specification",系统不认硬盘。 <BR><BR> 病因分析:造成该故障的原因一般是CMOS中的硬盘设置参数丢失或硬盘类型设置错误造成的。 <BR><BR> 治疗方法:进入CMOS,检查硬盘设置参数是否丢失或硬盘类型设置是否错误,如果确是该种故障,只需将硬盘设置参数恢复或修改过来即可,如果忘了硬盘参数不会修改,也可用备份过的CMOS信息进行恢复,如果你没有备份CMOS信息,也别急,有些高档微机的CMOS设置中有“HDD Auto Detection”(硬盘自动检测)选项,可自动检测出硬盘类型参数。若无此项,只好打开机箱,查看硬盘表面标签上的硬盘参数,照此修改即可。 <BR><BR> 六、显示:“HDD Controller Failure” <BR><BR> 病因分析:造成该故障的原因一般是硬盘线接口接触不良或接线错误。 <BR><BR> 治疗方法:先检查硬盘电源线与硬盘的连接,再检查硬盘数据信号线与多功能卡或硬盘的连接,如果连接松动或连线接反都会有上述提示,最好是能找一台型号相同且使用正常的微机,可以对比线缆的连接,若线缆接反则一目了然。 <BR><BR> 七、显示:“Invalid partition table”,硬盘不能启动,若从软盘启动则认C盘。 <BR><BR> 病因分析:造成该故障的原因一般是硬盘主引导记录中的分区表有错误,当指定了多个自举分区(只能有一个自举分区)或病毒占用了分区表时,将有上述提示。主引导记录(MBR)位于0磁头/0柱面/1扇区,由FDISK.EXE对硬盘分区时生成。MBR包括主引导程序、分区表和结束标志55AAH三部分,共占一个扇区。主引导程序中含有检查硬盘分区表的程序代码和出错信息、出错处理等内容。当硬盘启动时,主引导程序将检查分区表中的自举标志。若某个分区为可自举分区,则有分区标志80H,否则为00H,系统规定只能有一个分区为自举分区,若分区表中含有多个自举标志时,主引导程序会给出“Invalid partion table"的错误提示。 <BR><BR> 治疗方法:最简单的解决方法是用NDD修复,它将检查分区表中的错误,若发现错误,将会询问你是否愿意修改,你只要不断地回答YES即可修正错误,或者用备份过的分区表覆盖它也行(KV300,NU8.0中的RESCUE都具有备份与恢复分区表的功能)。如果是病毒感染了分区表,格式化是解决不了问题的,可先用杀毒软件杀毒,再用NDD进行修复。如果上述方法都不能解决,还有一招,就是先用FDISK重新分区,但分区大小必须和原来的分区一样,这一点尤为重要,分区后不要进行高级格式化,然后用NDD进行修复。修复后的硬盘不但能启动,而且硬盘上的信息也不会丢失。其实用Fdisk分区,相当于用正确的分区表覆盖原来的分区表。尤其当用软盘启动后不认硬盘时,这一招特灵。<BR><BR>38.硬盘的技术术语<BR>硬盘的技术术语(一) <BR>1. 单碟容量(storage per disk):<BR>这也是划分硬盘档次的一个指标,由于硬盘都是由一个或几个盘片组成的,所以单碟容量就是指包括正反两面在内的每个盘片的总容量。单碟容量的提高意味着生产厂商研发技术的提高,这所带来的好处不仅是使硬盘容量得以增加,而且还会带来硬盘性能的相应提升。因为单碟容量的提高就是盘片磁道密度每英寸的磁道数)的提高,磁道密度的提高不但意味着提高了盘片的磁道数量,而且在磁道上的扇区数量也得到了提高,所以盘片转动一周,就会有更多的扇区经过磁头而被读出来,这也是相同转速的硬盘单碟容量越大内部数据传输率就越快的一个重要原因。此外单碟容量的提高使线性密度(每英寸磁道上的位数)也得以提高,有利于硬盘寻道时间的缩短。<BR><BR> 2.硬盘的转速(Rotationl Speed): <BR><BR> 也就是硬盘电机主轴的转速。主轴转速(rotational speed或spindle speed),这是划分硬盘档次的一个重要指标。以每分钟硬盘盘片的旋转圈数来表示,单位rpm,目前常见的硬盘转速有5400rpm、7200rpm和10000rpm等。理论上转速越高,硬盘性能相对就越好,因为较高的转速能缩短硬盘的平均等待时间并提高硬盘的内部传输速度。但是转速越快的硬盘发热量和噪音相对也越大。为了解决这一系列的负面影响,应用在精密机械工业上的液态轴承马达(Fluid dynamic bearing motors)便被引入到硬盘技术中。液态轴承马达使用的是黏膜液油轴承,以油膜代替滚珠。这样可以避免金属面的直接磨擦,将噪声及温度被减至最低;同时油膜可有效吸收震动,使抗震能力得到提高;此外这还能减少磨损,提高硬盘寿命。<BR><BR> 3.平均寻道时间(Average seek time): <BR><BR> 指硬盘在盘面上移动读写头至指定磁道寻找相应目标数据所用的时间,它描述硬盘读取数据的能力,单位毫秒(ms)。当单碟片容量增大时,磁头的寻道动作和移动距离减少,从而使平均寻道时间减少,加快硬盘速度。目前市场上主流硬盘的平均寻道时间一般在9ms左右,但现在市面上新火球一代,以及美钻2代,平均寻道时间在12ms左右,都是5400转的产品,大家购买时要考虑到这一点。 <BR><BR> 4.平均潜伏时间(Average latency time): <BR><BR> 指当磁头移动到数据所在的磁道后,等待指定的数据扇区转动到磁头下方的时间,单位为毫秒(ms)。平均潜伏期时间是越小越好,潜伏期短代表硬盘在读取数据时的等待时间更短,转速越快的硬盘具有更低的平均潜伏期,而与单碟容量关系不大。一般来说,5400rpm硬盘的平均潜伏期为5.6ms,而7200rpm硬盘的平均潜伏期为4.2ms。<BR>5.平均访问时间(Average access time): <BR><BR> 指磁头从起始位置到达目标磁道位置,并且从目标磁道上找到指定的数据扇区所需的时间,单位为毫秒(ms)。平均访问时间最能够代表硬盘找到某一数据所用的时间,越短的平均访问时间越好,一般在11ms-18ms之间。。平均访问时间体现了硬盘的读写速度,它包括了硬盘的平均寻道时间和平均潜伏期,即:平均访问时间=平均寻道时间+平均潜伏期。 <BR><BR> 注意:现在不少硬盘广告之中所说的平均访问时间大部分都是用平均寻道时间所代替的。<BR> 6.道-道间寻道时间(single track seek),指磁头从一磁道移动至另一磁道的时间,单位为毫秒(ms)。<BR><BR> 7. 数据传输率(Data Transfer Rate) 计算机通过IDE接口从硬盘的缓存中将数据读出交给相应的控制器的速度与硬盘将数据从盘片上读取出交给硬盘上的缓冲存储器的速度相比,前者要比后者快得多,前者是外部数据传输率(External Transfer Rate),而后者是内部数据传输率(Internal Transfer Rate),两者之间用一块缓冲存储器作为桥梁来缓解速度的差距。通常也把外部数据传输率称为突发数据传输率(Burst data Transfer Rate),指的是电脑通过数据总线从硬盘内部缓存区中所读取数据的最高速率突发数据传输率(Burst data transfer rate)。以目前IDE硬盘的发展现状来看,理论上采用ATA-100传输协议的硬盘外部传输率已经达到100MB/s,然而最新的采用ATA-133的传输率以后,传输率又可达133MB/s。 <BR><BR> 内部数据传输率也被称作硬盘的持续传输率(Sustained Transfer Rate),指磁头至硬盘缓存间的数据传输率,一般取决于硬盘的盘片转速和盘片数据线密度(指同一磁道上的数据间隔度)。也叫持续数据传输率(sustained transfer rate)。<BR><BR> 由于内部数据传输率才是系统真正的瓶颈,因此大家在购买时要分清这两个概念。不过一般来讲,硬盘的转速相同时,单碟容量大的内部传输率高;在单碟容量相同时,转速高的硬盘的内部传输率高。?一般取决于硬盘的转速和盘片线性密度。应该清楚的是只有内部传输率向外部传输率接近靠拢,有效地提高硬盘的内部传输率才能对磁盘子系统的性能有最直接、最明显的提升。目前各硬盘生产厂家努力提高硬盘的内部传输率,除了改进信号处理技术、提高转速以外,最主要的就是不断的提高单碟容量以提高线性密度。由于单碟容量越大的硬盘线性密度越高,磁头的寻道频率与移动距离可以相应的减少,从而减少了平均寻道时间,内部传输速率也就提高了。 <BR><BR>硬盘的技术术语(二)<BR><BR>8. 自动检测分析及报告技术(Self-Monitoring Analysis and Report Technology,简称S.M.A.R.T): <BR><BR> 目前硬盘的平均无故障运行时间(MTBF)已达50000小时以上,但这对于挑剔的专业用户来说还是不够的,因为他们储存在硬盘中的数据才是最有价值的,因此专业用户所需要的就是能提前对故障进行预测的功能。正是这种需求才使S.M.A.R.T.技术得以应运而生。<BR><BR> 现在出厂的硬盘基本上都支持S.M.A.R.T技术。这种技术可以对硬盘的磁头单元、盘片电机驱动系统、硬盘内部电路以及盘片表面媒介材料等进行监测,它由硬盘的监测电路和主机上的监测软件对被监测对象的运行情况与历史记录及预设的安全值进行分析、比较,当S.M.A.R.T监测并分析出硬盘可能出现问题时会及时向用户报警以避免电脑数据受到损失。S.M.A.R.T技术必须在主板支持的前提下才能发生作用,而且同时也应该看到S.M.A.R.T.技术并不是万能的,对渐发性的故障的监测是它的用武之地,而对于一些突发性的故障,如对盘片的突然冲击等,S.M.A.R.T.技术也同样是无能为力的。<BR><BR> 9.磁阻磁头技术MR(Magneto-Resistive Head): <BR><BR> MR(MagnetoResistive)磁头,即磁阻磁头技术。MR技术可以更高的实际记录密度、记录数据,从而增加硬盘容量,提高数据吞吐率。目前的MR技术已有几代产品。MAXTOR的钻石三代/四代等均采用了最新的MR技术。磁阻磁头的工作原理是基于磁阻效应来工作的,其核心是一小片金属材料,其电阻随磁场变化而变化,虽然其变化率不足2%,但因为磁阻元件连着一个非常灵敏的放大器,所以可测出该微小的电阻变化。MR技术可使硬盘容量提高40%以上。GMR(GiantMagnetoresistive)巨磁阻磁头GMR磁头与MR磁头一样,是利用特殊材料的电阻值随磁场变化的原理来读取盘片上的数据,但是GMR磁头使用了磁阻效应更好的材料和多层薄膜结构,比MR磁头更为敏感,相同的磁场变化能引起更大的电阻值变化,从而可以实现更高的存储密度,现有的MR磁头能够达到的盘片密度为3Gbit-5Gbit/in2(千兆位每平方英寸),而GMR磁头可以达到10Gbit-40Gbit/in2以上。目前GMR磁头已经处于成熟推广期,在今后的数年中,它将会逐步取代MR磁头,成为最流行的磁头技术。当然单碟容量的提高并不是单靠磁头就能解决的,这还要有相应盘片材料的改进才行,比如IBM早在去年率先在75GXP硬盘中采用玻璃介质的盘片。 <BR><BR> 10.缓存:<BR><BR> 全称是数据缓冲存储器(cache buffer)指的是硬盘的高速缓冲存储器,是硬盘与外部总线交换数据的场所。硬盘的读数据的过程是将磁信号转化为电信号后,通过缓存一次次地填充与清空,再填充,再清空,一步步按照PCI总线的周期送出,可见,缓存的作用是相当重要的。在接口技术已经发展到一个相对成熟的阶段的时候,缓存的大小与速度是直接关系到硬盘的传输速度的重要因素。它一般使用7~10ns的SDRAM,目前主流IDE硬盘的数据缓存是2MB,但西部数据得JB系列的缓存达到了8MB,性能非常优秀。<BR>11.连续无故障时间(MTBF): <BR><BR> 指硬盘从开始运行到出现故障的最长时间,单位为小时。一般硬盘的MTBF都在30000或50000小时之间,算下来如果一个硬盘每天工作10小时,一年工作365天,它的寿命至少也有8年,所以用户大可不必为硬盘的寿命而担心。不过出于对数据安全方面的考虑,最好将硬盘的使用寿命控制在5年以内。 <BR> ? <BR> 12.部分响应完全匹配技术(PRML): <BR><BR> 它能使盘片存储更多的信息,同时可以有效地提高数据的读取和数据传输率。是当前应用于硬盘数据读取通道中的先进技术之一。PRML技术是将硬盘数据读取电路分成两段"操作流水线",流水线第一段将磁头读取的信号进行数字化处理然后只选取部分"标准"信号移交第二段继续处理,第二段将所接收的信号与PRML芯片预置信号模型进行对比,然后选取差异最小的信号进行组合后输出以完成数据的读取过程。PRML技术可以降低硬盘读取数据的错误率,因此可以进一步提高磁盘数据密集度。 <BR><BR> 13.单磁道时间(Single track seek time): <BR><BR> 指磁头从一磁道转移至另一磁道所用的时间。? <BR><BR> 14.超级数字信号处理器(Ultra DSP)技术: <BR><BR> 应用Ultra DSP进行数学运算,其速度较一般CPU快10到50倍。采用Ultra DSP技术,单个的DSP芯片可以同时提供处理器及驱动接口的双重功能,以减少其它电子元件的使用,可大幅度地提高硬盘的速度和可靠性。接口技术可以极大地提高硬盘的最大外部传输率,最大的益处在于可以把数据从硬盘直接传输到主内存而不占用更多的CPU资源,提高系统性能。 <BR><BR> 15.硬盘表面温度: <BR><BR> 指硬盘工作时产生的温度使硬盘密封壳温度上升情况。硬盘工作时产生的温度过高将影响薄膜式磁头(包括MR磁头)的数据读取灵敏度,因此硬盘工作表面温度较低的硬盘有更好的数据读、写稳定性。 <BR><BR> 16.全程访问时间(Max full seek time): <BR><BR> 指磁头开始移动直到最后找到所需要的数据块所用的全部时间。?<BR><BR>39.硬盘各部位常见故障汇总<BR><BR><BR>1)硬盘的供电:硬盘的供电取自主机的开关电源,四个接线柱的电压分别为:红色为正5V,黑色为地线,黄色为正12V,通过线性电源变换电路,变换为硬盘正常工作的各种电压。硬盘的供电电路如果出现问题,会直接导致硬盘不能工作。故障现象往往表现为不通电、硬盘检测不到、盘片不转、磁头不寻道等。供电电路常出问题的部位是:插座的接线柱、滤波电容、二极管、三极管、场效应管、电感、保险电阻等。<BR><BR> 2)接口:接口是硬盘与计算机之间传输数据的通路,接口电路如出现故障可能会导致硬盘检测不到、乱码、参数误认等现象。接口电路常出故障的部位是接口芯片或与之匹配的晶振坏、接口插针断或虚焊或脏污、接口排阻损坏,部分硬盘的接口塑料损坏导致厂家不予保修。<BR><BR> 3)缓存:用于加快硬盘数据传输速度,如出现问题可能会导致硬盘不被识别、乱码、进入操作系统后异常死机等现象。<BR><BR> 4)BIOS:用于保存与硬盘容量、接口信息等,硬盘所有的工作流程都与BIOS程序相关,通断电瞬间可能会导致BIOS程序丢失或紊乱。BIOS不正常会导致硬盘误认、不能识别等各种各样的故障现象。<BR><BR> 5)磁头芯片:贴装在磁头组件上,用于放大磁头信号、磁头逻辑分配、处理音圈电机反馈信号等,该芯片出现问题可能会出现磁头不能正确寻道、数据不能写入盘片、不能识别硬盘、异响等故障现象。<BR><BR> 6) 前置信号处理器:用于加工整理磁头芯片传来的数据信号,该芯片如出现问题可能会出现不能正确识别硬盘的故障现象。<BR><BR> 7)数字信号处理器:用于处理前置信号处理器传过来的数据信号,并对该信号解码或接收计算机传过来的数据信号,并对该信号进行编码。<BR><BR> 8)电机驱动芯片:用于驱动硬盘主轴电机和音圈电机。现在的硬盘由于转速太高导致该芯片发热量太大而损坏,据不完全统计,70% 左右的硬盘电路路障是由该芯片损坏引起。<BR><BR> 9)盘片:用于存储硬盘数据,轻微划伤时可通过软件按一定的算法解码纠错,严重划伤时,数据不可恢复。<BR><BR> 10)主轴电机:用于带动盘片高速旋转,现在的硬盘大多使用液态轴承马达,精度极高,剧烈碰撞后可能会使间隙变大,读取数据变得困难、异响或根本检测不到硬盘。该故障现象需用专用设备才能读取里面的数据。<BR><BR> 11)磁头:用于读取或写入硬盘数据,受到剧烈碰撞时易于损坏,导致不认硬盘。硬盘受到碰撞后受损可能性更大的是磁头。<BR><BR> 12)音圈电机:闭环控制电机,用于把磁头准确定位在磁道上。该电机较少损坏。<BR><BR> 13)定位卡子:用于使磁头停留在启停区,IBM等系列的硬盘的卡子易错位,导致磁头不能正常寻道。在无开盘维修条件的情况下,可按一定的角度适当敲击硬盘,使卡子回复到正确位置</DIV> |